首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6362篇
  免费   1058篇
  国内免费   659篇
化学   4715篇
晶体学   55篇
力学   315篇
综合类   15篇
数学   716篇
物理学   2263篇
  2024年   10篇
  2023年   174篇
  2022年   168篇
  2021年   231篇
  2020年   308篇
  2019年   287篇
  2018年   234篇
  2017年   230篇
  2016年   354篇
  2015年   331篇
  2014年   381篇
  2013年   461篇
  2012年   605篇
  2011年   636篇
  2010年   406篇
  2009年   408篇
  2008年   397篇
  2007年   379篇
  2006年   308篇
  2005年   282篇
  2004年   192篇
  2003年   179篇
  2002年   145篇
  2001年   106篇
  2000年   89篇
  1999年   111篇
  1998年   94篇
  1997年   91篇
  1996年   82篇
  1995年   68篇
  1994年   59篇
  1993年   49篇
  1992年   58篇
  1991年   37篇
  1990年   29篇
  1989年   28篇
  1988年   20篇
  1987年   14篇
  1986年   8篇
  1985年   12篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1957年   1篇
排序方式: 共有8079条查询结果,搜索用时 187 毫秒
81.
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size–shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.  相似文献   
82.
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.  相似文献   
83.
84.
Flexible batteries based on gel electrolytes with high safety are promising power solutions for wearable electronics but suffer from vulnerable electrode-electrolyte interfaces especially upon complex deformations, leading to irreversible capacity loss or even battery collapse. Here, a supramolecular sol-gel transition electrolyte (SGTE) that can dynamically accommodate deformations and repair electrode-electrolyte interfaces through its controllable rewetting at low temperatures is designed. Mediated by the micellization of polypropylene oxide blocks in Pluronic and host-guest interactions between α-cyclodextrin (α-CD) and polyethylene oxide blocks, the high ionic conductivity and compatibility with various salts of SGTE afford resettable electrode-electrolyte interfaces and thus constructions of a series of highly durable, flexible aqueous zinc batteries. The design of this novel gel electrolyte provides new insights for the development of flexible batteries.  相似文献   
85.
The development of PtIV prodrugs that are reduced into the therapeutically active PtII species within the tumor microenvironment has received much research interest. In order to provide spatial and temporal control over the treatment, there is a high demand for the development of compounds that could be selectively activated upon irradiation. Despite recent progress, the majority of PtIV complexes are excited with ultraviolet or blue light, limiting the use of such compounds to superficial application. To overcome this limitation, herein, the first example of PtIV prodrug nanoparticles that could be reduced with deeply penetrating ultrasound radiation is reported, enabling the treatment of deep-seated or large tumors. The nanoparticles were found to selectively accumulate inside a mouse colon carcinoma tumor upon intravenous injection and were able to eradicate the tumor upon exposure to ultrasound radiation.  相似文献   
86.
Chiral induction has been an important topic in chemistry, not only for its relevance in understanding the mysterious phenomenon of spontaneous symmetry breaking in nature but also due to its critical implications in medicine and the chiral industry. The induced chirality of fullerenes by host–guest interactions has been rarely reported, mainly attributed to their chiral resistance from high symmetry and challenges in their accessibility. Herein, we report two new pairs of chiral porous aromatic cages (PAC), R- PAC-2 , S- PAC-2 (with Br substituents) and R- PAC-3 , S- PAC-3 (with CH3 substituents) enantiomers. PAC-2 , rather than PAC-3 , achieves fullerene encapsulation and selective binding of C70 over C60 in fullerene carbon soot. More significantly, the occurrence of chiral induction between R- PAC-2 , S- PAC-2 and fullerenes is confirmed by single-crystal X-ray diffraction and the intense CD signal within the absorption region of fullerenes. DFT calculations reveal the contribution of electrostatic effects originating from face-to-face arene-fullerene interactions dominate C70 selectivity and elucidate the substituent effect on fullerene encapsulation. The disturbance from the differential interactions between fullerene and surrounding chiral cages on the intrinsic highly symmetric electronic structure of fullerene could be the primary reason accounting for the induced chirality of fullerene.  相似文献   
87.
Inorganic Bi-based perovskites have shown great potential in X-ray detection for their large absorption to X-rays, diverse low-dimensional structures, and eco-friendliness without toxic metals. However, they suffer from poor carrier transport properties compared to Pb-based perovskites. Here, we propose a mixed-halogen strategy to tune the structural dimensions and optoelectronic properties of Cs3Bi2I9−nBrn (0≤n≤9). Ten centimeter-sized single crystals are successfully grown by the Bridgman technique. Upon doping bromine to zero-dimensional Cs3Bi2I9, the crystal transforms into a two-dimensional structure as the bromine content reaches Cs3Bi2I8Br. Correspondingly, the optoelectronic properties are adjusted. Among these crystals, Cs3Bi2I8Br exhibits negligible ion migration, moderate resistivity, and the best carrier transport capability. The sensitivities in 100 keV hard X-ray detection are 1.33×104 and 1.74×104 μC Gyair−1 cm−2 at room temperature and 75 °C, respectively, which are the highest among all reported bismuth perovskites. Moreover, the lowest detection limit of 28.6 nGyair s−1 and ultralow dark current drift of 9.12×10−9 nA cm−1 s−1 V−1 are obtained owing to the high ionic activation energy. Our work demonstrates that Br incorporation is an effective strategy to enhance the X-ray detection performance by tuning the dimensional and optoelectronic properties.  相似文献   
88.
Over the recent decades, due to the special electronic characteristics and diverse reactivities, N-heterocyclic carbene (NHC) has received significant interest in organocatalyzed reactions. The formation of Breslow intermediates by NHC can convert into acyl anion equivalent, enolates, homoenolate, acyl azolium, and vinyl enolate etc., and the cycloaddition reactions of these species has attracted lots of attention. In this review, we focus on the summry of the development of NHC-activation of carbonyl carbon (or imine carbon) in situ, α-, β-, γ-, and beyond, and the cycloaddition reaction of these species.  相似文献   
89.
One of the most critical and yet unsolved issues is the effective monitoring of multiple heavy metal ions in complex systems through their specific function in fluorescence detection. In this work, luminescence-active cadmium base metal-organic frameworks (Cd-MOFs) based on the planar and rigid π-conjugated structure ligand benzo-(1,2;3,4;5,6)-tris (thiophene-2’-carboxylic acid) (H3BTTC) was chosen. A series of sensing experiments demonstrated that the Cd-MOFs exhibits selective and sensitive response for Fe3+ and Eu3+ through fluorescence “turn off” and “antenna effect” respectively. In addition, the encapsulation of Eu3+ inside the Cd-MOFs (Eu3+@Cd-MOFs) led to an excellent probe with dual emission. To this end, a programmable fluorescence platform was developed to detect Fe3+ and Cu2+, in which the emission peaks of both the ligand and Eu3+ are completely quenched by Fe3+. The ratiometric detection of Cu2+ leads to a decrease in Eu3+ emission, while the ligand emission remains stable. To demonstrate the strategy, the fluorescence (Output) of Cd-MOFs, Eu3+@Cd-MOFs, and the analytes (Eu3+, Fe3+, and Cu2+, input) achieved elementary Boolean logic operations (OR, NOR, AND) and they constitute a logic fluorescent chemosensor to analyze Fe3+ and Cu2+ synchronously.  相似文献   
90.
A novel fluorescent probe, LCH , based on dicyanisophorone and carbazole, was prepared for the visual detection of Cu2+. The probe LCH could recognize Cu2+ by fluorescence quenching in EtOH/H2O (1/4, v/v) solution, which could be easily identified under the 365 nm UV lamp, and the detection limit was as low as 0.785 μM. The recognition mechanism of probe LCH with Cu2+ was determined by combining 1H NMR titration, MS, and theoretical calculations. Practical application experiments showed that probe LCH could be used to detect Cu2+ in the test strip experiments. Cell imaging experiments showed that the probe LCH owned good cell permeability and could be applied to the imaging of Cu2+ in HepG2 cells. In addition, fluorescence colocalization experiments showed that LCH could target lipid droplets. These results indicate that the probe LCH will have a good application prospect in environmental detection and clinical medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号